-
程序,进程,线程
“程序(Program)”
是一个静态的概念,一般对应于操作系统中的一个可执行文件,比如:我们要启动酷狗听音乐,则对应酷狗的可执行程序。当我们双击酷狗,则加载程序到内存中,开始执行该程序,于是产生了“进程”。
“进程(Process)”
执行中的程序叫做进程(Process),是一个动态的概念。现代的操作系统都可以同时启动多个进程。比如:我们在用酷狗听音乐,也可以使用eclipse写代码,也可以同时用浏览器查看网页。进程具有如下特点:
1. 进程是程序的一次动态执行过程, 占用特定的地址空间。
2. 每个进程由3部分组成:cpu、data、code。每个进程都是独立的,保有自己的cpu时间,代码和数据,即便用同一份程序产生好几个进程,它们之间还是拥有自己的这3样东西,这样的缺点是:浪费内存,cpu的负担较重。
3. 多任务(Multitasking)操作系统将CPU时间动态地划分给每个进程,操作系统同时执行多个进程,每个进程独立运行。以进程的观点来看,它会以为自己独占CPU的使用权。
“线程”
一个进程可以产生多个线程。同多个进程可以共享操作系统的某些资源一样,同一进程的多个线程也可以共享此进程的某些资源(比如:代码、数据),所以线程又被称为轻量级进程(lightweight process)。
1. 一个进程内部的一个执行单元,它是程序中的一个单一的顺序控制流程。
2. 一个进程可拥有多个并行的(concurrent)线程。
3. 一个进程中的多个线程共享相同的内存单元/内存地址空间,可以访问相同的变量和对象,而且它们从同一堆中分配对象并进行通信、数据交换和同步操作。
4. 由于线程间的通信是在同一地址空间上进行的,所以不需要额外的通信机制,这就使得通信更简便而且信息传递的速度也更快。
5. 线程的启动、中断、消亡,消耗的资源非常少。
进程和线程的区别
1. 每个进程都有独立的代码和数据空间(进程上下文),进程间的切换会有较大的开销。
2. 线程可以看成是轻量级的进程,属于同一进程的线程共享代码和数据空间,每个线程有独立的运行栈和程序计数器(PC),线程切换的开销小。
3. 线程和进程最根本的区别在于:进程是资源分配的单位,线程是调度和执行的单位。
4. 多进程: 在操作系统中能同时运行多个任务(程序)。
5. 多线程: 在同一应用程序中有多个顺序流同时执行。
6. 线程是进程的一部分,所以线程有的时候被称为轻量级进程。
7. 一个没有线程的进程是可以被看作单线程的,如果一个进程内拥有多个线程,进程的执行过程不是一条线(线程)的,而是多条线(线程)共同完成的。
8. 系统在运行的时候会为每个进程分配不同的内存区域,但是不会为线程分配
内存(线程所使用的资源是它所属的进程的资源),线程组只能共享资源。那就是
说,除了CPU之外(线程在运行的时候要占用CPU资源),计算机内部的软硬件资源
的分配与线程无关,线程只能共享它所属进程的资源。
通过继承Thread类实现多线程
继承Thread类实现多线程的步骤:
1. 在Java中负责实现线程功能的类是java.lang.Thread 类。
2. 可以通过创建 Thread的实例来创建新的线程。
3. 每个线程都是通过某个特定的Thread对象所对应的方法run( )来完成其操作的,方法run( )称为线程体。
4. 通过调用Thread类的start()方法来启动一个线程。
例如:
public class TestThread extends Thread {//自定义类继承Thread类
//run()方法里是线程体
public void run() {
for (int i = 0; i < 10; i++) {
System.out.println(this.getName() + ":" + i);//getName()方法是返回线程名称
}
}
public static void main(String[] args) {
TestThread thread1 = new TestThread();//创建线程对象
thread1.start();//启动线程
TestThread thread2 = new TestThread();
thread2.start();
}
}
通过Runnable接口实现多线程
例如:
public class TestThread2 implements Runnable {//自定义类实现Runnable接口;
//run()方法里是线程体;
public void run() {
for (int i = 0; i < 10; i++) {
System.out.println(Thread.currentThread().getName() + ":" + i);
}
}
public static void main(String[] args) {
//创建线程对象,把实现了Runnable接口的对象作为参数传入;
Thread thread1 = new Thread(new TestThread2());
thread1.start();//启动线程;
Thread thread2 = new Thread(new TestThread2());
thread2.start();
}
}
注意:这里不是直接用new TestThread2()来启动线程,而是用Thread
来启动
Callable与Future创建线程
Thread和Runnable两种方式创建线程,不过这两种方式创建线程都有一个缺陷:在执行完任务之后无法获取执行结果。
而如果使用Callable和Future,通过它们就可以在任务执行完毕之后得到任务执行结果。
Callable产生结果
Future获取结果。
步骤:
1、创建 Callable 接口的实现类,并实现 call() 方法,该 call() 方法将作为线程执行体,并且有返回值;
2、创建 Callable 实现类的实例,使用 FutureTask 类来包装 Callable 对象,该 FutureTask 对象封装了该 Callable 对象的 call() 方法的返回值;
3、使用 FutureTask 对象作为 Thread 对象的 target 创建并启动新线程;
4、调用 FutureTask 对象的 get() 方法来获得子线程执行结束后的返回值。
之所以要FutureTask是这样的。因为要启动线程就要用Thread对象来启动,但是Thread的构造方法要传一个和Runnable接口有关的。而通过实现callable接口来构造出来的多线程是与Runnable无关的,所以这个时候就要找一个中间人FutureTask
它实现了Runnable接口,而构造方法又需要传一个Callable,这样就可以①new FutureTasj(Callable)
②6Thread(FutureTask).start
了。
例如:
public class Test {
public static void main(String[] args) {
CallableThreadTest cts = new CallableThreadTest();
// 接收
FutureTask<Integer> ft = new FutureTask<>(cts);
new Thread(ft, "有返回值的线程").start();
for (int i = 0; i < 30; i++) {
System.out.println( "main" + " 的循环变量i的值:" + i);
}
try {
System.out.println("子线程的返回值:" + ft.get());
} catch (Exception e) {
e.printStackTrace();
}
}
}
class CallableThreadTest implements Callable<Integer> {
public Integer call() throws Exception {
int i = 0;
for (; i < 30; i++) {
System.out.println(Thread.currentThread().getName() + " " + i);
}
return i;
}
}
FutureTask
是什么
未来的任务,用它就干一件事,异步调用main方法就像一个冰糖葫芦,一个个方法由main串起来。但解决不了一个问题:正常调用挂起堵塞问题
例子:
(1)老师上着课,口渴了,去买水不合适,讲课线程继续,我可以单起个线程找班长帮忙买水,水买回来了放桌上,我需要的时候再去get。
(2)4个同学,A算1+20,B算21+30,C算31*到40,D算41+50,是不是C的计算量有点大啊,FutureTask单起个线程给C计算,我先汇总ABD,最后等C计算完了再汇总C,拿到最终结果
(3)高考:会做的先做,不会的放在后面做
原理
在主线程中需要执行比较耗时的操作时,但又不想阻塞主线程时,可以把这些作业交给Future对象在后台完成,当主线程将来需要时,就可以通过Future对象获得后台作业的计算结果或者执行状态。一般FutureTask多用于耗时的计算,主线程可以在完成自己的任务后,再去获取结果。仅在计算完成时才能检索结果;如果计算尚未完成,则阻塞 get 方法。一旦计算完成,就不能再重新开始或取消计算。get方法而获取结果只有在计算完成时获取,否则会一直阻塞直到任务转入完成状态,然后会返回结果或者抛出异常。 只计算一次get方法放到最后
代码
package cduck.cn;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;
import java.util.concurrent.TimeUnit;
class MyThread implements Callable<Integer>{
@Override
public Integer call() throws Exception {
System.out.println("*********QAQ*********");
TimeUnit.SECONDS.sleep(3);//模拟计算所花费的时间
return 500;
}
}
/**
* get方法请放在最后一行:因为假如那个比较耗时的还没有计算完,你就去一直强求,可能会导致线程阻塞
*/
public class CallableDemo {
public static void main(String[] args) throws ExecutionException, InterruptedException {
MyThread myThread=new MyThread();
FutureTask futureTask=new FutureTask(myThread);
new Thread(futureTask,"A:(可以有返回值哦~)").start();
new Thread(futureTask,"B").start();
//虽然有两个线程但是"*********QAQ*********"只会调用一次,因为会结果复用。
System.out.println("****计算完成");
System.out.println(futureTask.get());
/**
* 例如做题目,有几个简单的,花费时间很短,有一个难得花费时间很长。
* 我们把get放在最后(获取难题目的答案),先执行简单的题目。可以节约时间
}
}
线程状态
线程的5个状态
新生状态(New)
用new关键字建立一个线程对象后,该线程对象就处于新生状态。处于新生状态的线程有自己的内存空间,通过调用start方法进入就绪状态。
就绪状态(Runnable)
处于就绪状态的线程已经具备了运行条件,但是还没有被分配到CPU,处于“线程就绪队列”,等待系统为其分配CPU。就绪状态并不是执行状态,当系统选定一个等待执行的Thread对象后,它就会进入执行状态。一旦获得CPU,线程就进入运行状态并自动调用自己的run方法。有4中原因会导致线程进入就绪状态:
1. 新建线程:调用start()方法,进入就绪状态;
2. 阻塞线程:阻塞解除,进入就绪状态;
3. 运行线程:调用yield()方法,直接进入就绪状态;
4. 运行线程:JVM将CPU资源从本线程切换到其他线程。
运行状态(Running)
在运行状态的线程执行自己run方法中的代码,直到调用其他方法而终止或等待某资源而阻塞或完成任务而死亡。如果在给定的时间片内没有执行结束,就会被系统给换下来回到就绪状态。也可能由于某些“导致阻塞的事件”而进入阻塞状态。
阻塞状态(Blocked)
阻塞指的是暂停一个线程的执行以等待某个条件发生(如某资源就绪)。有4种原因会导致阻塞:
1. 执行sleep(int millsecond)方法,使当前线程休眠,进入阻塞状态。当指定的时间到了后,线程进入就绪状态。
2. 执行wait()方法,使当前线程进入阻塞状态。当使用nofity()方法唤醒这个线程后,它进入就绪状态。
3. 线程运行时,某个操作进入阻塞状态,比如执行IO流操作(read()/write()方法本身就是阻塞的方法)。只有当引起该操作阻塞的原因消失后,线程进入就绪状态。
4. join()线程联合: 当某个线程等待另一个线程执行结束后,才能继续执行时,使用join()方法。
死亡状态(Terminated)
死亡状态是线程生命周期中的最后一个阶段。线程死亡的原因有两个。一个是正常运行的线程完成了它run()方法内的全部工作; 另一个是线程被强制终止,如通过执行stop()或destroy()方法来终止一个线程(注:stop()/destroy()方法已经被JDK废弃,不推荐使用)。
当一个线程进入死亡状态以后,就不能再回到其它状态了。
终止线程的典型方式
终止线程我们一般不使用JDK提供的stop()/destroy()方法(它们本身也被JDK废弃了)。通常的做法是提供一个boolean型的终止变量,当这个变量置为false,则终止线程的运行。
例如:
public class TestThreadCiycle implements Runnable {
String name;
boolean live = true;// 标记变量,表示线程是否可中止;
public TestThreadCiycle(String name) {
super();
this.name = name;
}
public void run() {
int i = 0;
//当live的值是true时,继续线程体;false则结束循环,继而终止线程体;
while (live) {
System.out.println(name + (i++));
}
}
public void terminate() {
live = false;
}
public static void main(String[] args) {
TestThreadCiycle ttc = new TestThreadCiycle("线程A:");
Thread t1 = new Thread(ttc);// 新生状态
t1.start();// 就绪状态
for (int i = 0; i < 100; i++) {
System.out.println("主线程" + i);
}
ttc.terminate();
System.out.println("ttc stop!");
}
}
暂停线程执行sleep/yield
暂停线程执行常用的方法有sleep()和yield()方法,这两个方法的区别是:
1. sleep()方法:可以让正在运行的线程进入阻塞状态,直到休眠时间满了,进入就绪状态。
2. yield()方法:可以让正在运行的线程直接进入就绪状态,让出CPU的使用权。
例如:
Sleep
public class TestThreadState {
public static void main(String[] args) {
StateThread thread1 = new StateThread();
thread1.start();
StateThread thread2 = new StateThread();
thread2.start();
}
}
//使用继承方式实现多线程
class StateThread extends Thread {
public void run() {
for (int i = 0; i < 100; i++) {
System.out.println(this.getName() + ":" + i);
try {
Thread.sleep(2000);//调用线程的sleep()方法;
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
yield
public class TestThreadState {
public static void main(String[] args) {
StateThread thread1 = new StateThread();
thread1.start();
StateThread thread2 = new StateThread();
thread2.start();
}
}
//使用继承方式实现多线程
class StateThread extends Thread {
public void run() {
for (int i = 0; i < 100; i++) {
System.out.println(this.getName() + ":" + i);
Thread.yield();//调用线程的yield()方法;
}
}
}
线程的联合join()
线程A在运行期间,可以调用线程B的join()方法,让线程B和线程A联合。这样,线程A就必须等待线程B执行完毕后,才能继续执行。如下面示例中,“爸爸线程”要抽烟,于是联合了“儿子线程”去买烟,必须等待“儿子线程”买烟完毕,“爸爸线程”才能继续抽烟。
public class TestThreadState {
public static void main(String[] args) {
System.out.println("爸爸和儿子买烟故事");
Thread father = new Thread(new FatherThread());
father.start();
}
}
class FatherThread implements Runnable {
public void run() {
System.out.println("爸爸想抽烟,发现烟抽完了");
System.out.println("爸爸让儿子去买包红塔山");
Thread son = new Thread(new SonThread());
son.start();
System.out.println("爸爸等儿子买烟回来");
try {
son.join();
} catch (InterruptedException e) {
e.printStackTrace();
System.out.println("爸爸出门去找儿子跑哪去了");
// 结束JVM。如果是0则表示正常结束;如果是非0则表示非正常结束
System.exit(1);
}
System.out.println("爸爸高兴的接过烟开始抽,并把零钱给了儿子");
}
}
class SonThread implements Runnable {
public void run() {
System.out.println("儿子出门去买烟");
System.out.println("儿子买烟需要10分钟");
try {
for (int i = 1; i <= 10; i++) {
System.out.println("第" + i + "分钟");
Thread.sleep(1000);
}
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("儿子买烟回来了");
}
}
线程的常用方法
函数 | 描述 |
---|---|
setName(String name) | 改变线程名称,使之与参数 name 相同。 |
setPriority(int priority) | 改变线程的优先级 |
setDaemon(boolean on) | 将该线程标记为守护线程或用户线程。 |
join(long millisec) | 等待该线程终止的时间最长为 millis 毫秒 |
interrupt() | 中断线程 |
isAlive() | 测试线程是否处于活动状态。 |
holdsLock(Object x) | 当且仅当当前线程在指定的对象上保持监视器锁时,才返回 true。 |
public static Thread currentThread() | 返回对当前正在执行的线程对象的引用。 |
dumpStack() | dumpStack() |
线程的优先级
1. 处于就绪状态的线程,会进入“就绪队列”等待JVM来挑选。
2. 线程的优先级用数字表示,范围从1(最低优先级)到10(最高优先级),一个线程的默认优先级是5。
3. 使用下列方法获得或设置线程对象的优先级。
int getPriority();
void setPriority(int newPriority);
注意:优先级低只是意味着获得调度的概率低。并不是绝对先调用优先级高的线程后调用优先级低的线程。
例如
public class TestThread {
public static void main(String[] args) {
Thread t1 = new Thread(new MyThread(), "t1");
Thread t2 = new Thread(new MyThread(), "t2");
t1.setPriority(1);
t2.setPriority(10);
t1.start();
t2.start();
}
}
class MyThread extends Thread {
public void run() {
for (int i = 0; i < 10; i++) {
System.out.println(Thread.currentThread().getName() + ": " + i);
}
}
}
线程同步(synchronized 与Lock)
synchronized
概念:
处理多线程问题时,多个线程访问同一个对象,并且某些线程还想修改这个对象。 这时候,我们就需要用到“线程同步”。 线程同步其实就是一种等待机制,多个需要同时访问此对象的线程进入这个对象的等待池形成队列,等待前面的线程使用完毕后,下一个线程再使用。
实现线程同步
由于可以通过 private 关键字来保证数据对象只能被方法访问,所以我们只需针对方法提出一套机制,这套机制就是synchronized关键字,它包括两种用法:synchronized 方法和 synchronized 块。
synchronized 方法
通过在方法声明中加入 synchronized关键字来声明,语法如下:
public synchronized void accessVal(int newVal);
synchronized 方法控制对“对象的类成员变量”的访问:
每个对象对应一把锁,每个 synchronized 方法都必须获得调用该方法的对象的锁方能执行,否则所属线程阻塞,方法一旦执行,就独占该锁,直到从该方法返回时才将锁释放,此后被阻塞的线程方能获得该锁,重新进入可执行状态。
synchronized块
synchronized 方法的缺陷:若将一个大的方法声明为synchronized 将会大大影响效率。
Java 为我们提供了更好的解决办法,那就是 synchronized 块。 块可以让我们精确地控制到具体的“成员变量”,缩小同步的范围,提高效率。
synchronized 块:通过 synchronized关键字来声明synchronized 块,语法如下:
synchronized(syncObject)
{
//允许访问控制的代码
}
示例:
public class TestSync {
public static void main(String[] args) {
Account a1 = new Account(100, "高");
Drawing draw1 = new Drawing(80, a1);
Drawing draw2 = new Drawing(80, a1);
draw1.start(); // 你取钱
draw2.start(); // 你老婆取钱
}
}
/*
* 简单表示银行账户
*/
class Account {
int money;
String aname;
public Account(int money, String aname) {
super();
this.money = money;
this.aname = aname;
}
}
/**
* 模拟提款操作
*
* @author Administrator
*
*/
class Drawing extends Thread {
int drawingNum; // 取多少钱
Account account; // 要取钱的账户
int expenseTotal; // 总共取的钱数
public Drawing(int drawingNum, Account account) {
super();
this.drawingNum = drawingNum;
this.account = account;
}
@Override
public void run() {
draw();
}
void draw() {
synchronized (account) {
if (account.money - drawingNum < 0) {
System.out.println(this.getName() + "取款,余额不足!");
return;
}
try {
Thread.sleep(1000); // 判断完后阻塞。其他线程开始运行。
} catch (InterruptedException e) {
e.printStackTrace();
}
account.money -= drawingNum;
expenseTotal += drawingNum;
}
System.out.println(this.getName() + "--账户余额:" + account.money);
System.out.println(this.getName() + "--总共取了:" + expenseTotal);
}
}
lock
简介
比如,当多个线程操作同一个文件的时候,同时读写是会冲突的,同时写也是会冲突的,但是同时读是不会发生冲突的,而我们如果用synchronized来实现同步,就会出现一个问题:
如果多个线程都只是进行读操作,所以当一个线程在进行读操作时,其他线程只能等待无法进行读操作。
因此就需要一种机制来使得多个线程都只是进行读操作时,线程之间不会发生冲突,而通过Lock就可以办到。
总的来说Lock要比synchronized提供的功能更多,可定制化的程度也更高,Lock不是Java语言内置的,而是一个类。
lock源码
public interface Lock {
void lock();
void lockInterruptibly() throws InterruptedException;
boolean tryLock();
boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
void unlock();
Condition newCondition();
}
可以发现Lock是一个接口,其中:lock()、tryLock()、tryLock(long time, TimeUnit unit)和lockInterruptibly()方法是用来获取锁的,unlock()方法是用来释放锁的。
首先lock()方法是平常使用得最多的一个方法,就是用来获取锁。如果锁已被其他线程获取,则进行等待。
由于在前面讲到如果采用Lock,必须主动去释放锁,并且在发生异常时,不会自动释放锁。因此一般来说,使用Lock必须在try{}catch{}块中进行,并且将释放锁的操作放在finally块中进行,以保证锁一定被被释放,防止死锁的发生。
例如:
Lock lock = ...;
lock.lock();
try{
//处理任务
}catch(Exception ex){
}finally{
lock.unlock(); //释放锁
}
tryLock()顾名思义,是用来尝试获取锁的,并且该方法有返回值,表示获取成功与否,获取成功返回true,失败返回false,从方法可以发现,该方法如果没有获取到锁时不会继续等待的,而是会直接返回值。
tryLock()的重载方法tryLock(long time, TimeUnit unit)功能类似,只是这个方法会等待一段时间获取锁,如果过了等待时间还未获取到锁就会返回false,如果在等待时间之内拿到锁则返回true。
所以经常将二者配合使用:
Lock lock = ...;
if(lock.tryLock()) {
try{
//处理任务
}catch(Exception ex){
}finally{
lock.unlock(); //释放锁
}
}else {
//如果不能获取锁,则直接做其他事情
}
因为Lock是一个接口所以我们在编程时一般会使用它的实现类,ReentrantLock是Lock接口的一个实现类,意思是“可重入锁”.
示例:
public class Test {
private ArrayList<Integer> arrayList = new ArrayList<Integer>();
private Lock lock = new ReentrantLock(); //注意这个地方
public static void main(String[] args) {
final Test test = new Test();
new Thread(){
public void run() {
test.insert(Thread.currentThread());
};
}.start();
new Thread(){
public void run() {
test.insert(Thread.currentThread());
};
}.start();
}
public void insert(Thread thread) {
if(lock.tryLock()) {
try {
System.out.println(thread.getName()+"得到了锁");
for(int i=0;i<5;i++) {
arrayList.add(i);
}
} catch (Exception e) {
// TODO: handle exception
}finally {
System.out.println(thread.getName()+"释放了锁");
lock.unlock();
}
} else {
System.out.println(thread.getName()+"获取锁失败");
}
}