剑指 Offer 62. 圆圈中最后剩下的数字


剑指 Offer 62. 圆圈中最后剩下的数字

解题思路

著名的约瑟夫环问题。

分析

最后只剩下一个元素,假设这个最后存活的元素为 num, 这个元素最终的的下标一定是0 (因为最后只剩这一个元素),
所以如果我们可以推出上一轮次中这个num的下标,然后根据上一轮num的下标推断出上上一轮num的下标,
直到推断出元素个数为n的那一轮num的下标,那我们就可以根据这个下标获取到最终的元素了。推断过程如下:

首先最后一轮中num的下标一定是0, 这个是已知的。
那上一轮应该是有两个元素,此轮次中 num 的下标为 (0 + m)%n = (0+3)%2 = 1; 说明这一轮删除之前num的下标为1;
再上一轮应该有3个元素,此轮次中 num 的下标为 (1+3)%3 = 1;说明这一轮某元素被删除之前num的下标为1;
再上一轮应该有4个元素,此轮次中 num 的下标为 (1+3)%4 = 0;说明这一轮某元素被删除之前num的下标为0;
再上一轮应该有5个元素,此轮次中 num 的下标为 (0+3)%5 = 3;说明这一轮某元素被删除之前num的下标为3;
....

因为我们要删除的序列为0-n-1, 所以求得下标其实就是求得了最终的结果。比如当n 为5的时候,num的初始下标为3,
 所以num就是3,也就是说从0-n-1的序列中, 经过n-1轮的淘汰,3这个元素最终存活下来了,也是最终的结果。

总结一下推导公式:(上轮的num下标 + m) % 本轮元素个数 = 本轮num的下标

代码

class Solution {
    public int lastRemaining(int n, int m) {
        int res=0;
        //最后一轮的上一轮还剩下两个元素,所以从2开始反推
        for(int i=2;i<=n;i++){
            res=(res+m)%i;
        }
        return res;
    }
}

文章作者: fFee-ops
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 fFee-ops !
评论
  目录