kafka简介


1. 应用场景

1.1 kafka场景

Kafka最初是由LinkedIn公司采用Scala语言开发,基于ZooKeeper,现在已经捐献给了Apache基金会。目前Kafka已经定位为一个分布式流式处理平台,它以 高吞吐、可持久化、可水平扩展、支持流处理等多种特性而被广泛应用。

Apache Kafka能够支撑海量数据的数据传递。在离线和实时的消息处理业务系统中,Kafka都有广泛的应用。

(1)日志收集:收集各种服务的log,通过kafka以统一接口服务的方式开放 给各种consumer,例如Hadoop、Hbase、Solr等;

(2)消息系统:解耦和生产者和消费者、缓存消息等;

(3)用户活动跟踪:Kafka经常被用来记录web用户或者app用户的各种活动,如浏览网页、搜索、点击等活动,这些活动信息被各个服务器发布到kafka的topic中,然后订阅者通过订阅这些topic来做实时的监控分析,或者装载到Hadoop、数据仓库中做离线分析和挖掘;

(4)运营指标:Kafka也经常用来记录运营监控数据。包括收集各种分布式应用的数据,生产各种操作的集中反馈,比如报警和报告;

(5)流式处理:比如spark streaming和storm;

1.2 kafka特性

kafka以高吞吐量著称,主要有以下特性:
(1)高吞吐量、低延迟:kafka每秒可以处理几十万条消息,它的延迟最低只有几毫秒;

(2)可扩展性:kafka集群支持热扩展;

(3)持久性、可靠性:消息被持久化到本地磁盘,并且支持数据备份防止数据丢失;

(4)容错性:允许集群中节点失败(若副本数量为n,则允许n-1个节点失败);

(5)高并发:支持数千个客户端同时读写;

1.3 消息对比

  • 如果普通的业务消息解耦,消息传输,rabbitMq是首选,它足够简单,管理方便,性能够用。
  • 如果在上述,日志、消息收集、访问记录等高吞吐,实时性场景下,推荐kafka,它基于分布式,扩容便捷
  • 如果很重的业务,要做到极高的可靠性,考虑rocketMq,但是它太重。需要你有足够的了解

    1.4 大厂应用

1.4 大厂应用
京东通过kafka搭建数据平台,用于用户购买、浏览等行为的分析。成功抗住6.18的流量洪峰
阿里借鉴kafka的理念,推出自己的rocketmq。在设计上参考了kafka的架构体系


文章作者: fFee-ops
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 fFee-ops !
评论
  目录